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Two lower estimates in greedy approximation!

V.N. TEMLYAKOV

University of South Carolina, Columbia, SC 29208, USA

ABSTRACT. We prove one lower estimate for the rate of convergence of Pure Greedy
Algorithm with regard to a general dictionary and another lower estimate for the rate
of convergence of Weak Greedy Algorithm with a special weakness sequence 7 = {t},
0 <t <1, with regard to a general dictionary. The second lower estimate combined
with the known upper estimate gives the right (in the sense of order) dependence of
the exponent in the rate of convergence on the parameter ¢ when ¢ — 0.

1. INTRODUCTION

This paper is a followup to the paper [L] of E. Livshitz. In Sections 2,3 we study
the convergence rate of Pure Greedy Algorithm and in Section 4 we study Weak
Greedy Algorithm. We define first the Pure Greedy Algorithm (PGA) in Hilbert
space H. We describe this algorithm for a general dictionary D. If f € H, we
let g(f) € D be an element from D which maximizes |(f, g)|. We shall assume for
simplicity that such a maximizer exists; if not suitable modifications are necessary
(see Weak Greedy Algorithm below) in the algorithm that follows. We define

G(f,D) = (f,9(F)g(f)
and

R(f,D) = f - G(fa D)
Pure Greedy Algorithm (PGA). We define Ryo(f,D) := f and Go(f,D) := 0.
Then, for each m > 1, we inductively define

Gm(fv D) = Gmfl(fv D) + G(Rmfl(fv 'D),'D)

Rin(f,D) = f = Gm(f, D) = R(Rm-1(f, D), D).

For a general dictionary D we define the class of functions

A?(D, M) !:{fGH:f:chwk, wg € D, #A < oo and Z|0k|§M}
keA keA

and we define A, (D, M) as the closure (in H) of A(D, M). Furthermore, we define
A1 (D) as the union of the classes A;(D, M) over all M > 0. For f € A;(D), we
define the “semi-norm”

|f|A1 (D)
as the smallest M such that f € A, (D, M).

IThis research was supported by the National Science Foundation Grant DMS 9970326 and
by ONR Grant N00014-91-J1343
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It was proved in [DT] that for a general dictionary D the Pure Greedy Algorithm
provides the following estimate

(1.1) 1f = G £, D) < |f]ayoym™°.

(In this and similar estimates we consider that the inequality holds for all possible
choices of {G,,}.) The paper [DT] contains also an example of a dictionary D and
an element f such that

1 _
(12) 1 = G £, D) > Sl flasmym ™%, m 24,

We proved in [KT] a new estimate

(1.3) If = G (£, D)|| < 4| f] 4, (0ym /62

which improves a little the original one (see (1.1)).
E. Livshitz [L] proved that there exist 6 > 0, a dictionary D and an element
f e H, f+#0,such that

If = G(f, D)|| = C 2% f| 4, ()

with a positive constant C. We develop and refine ideas from [L] here to prove the
following lower estimate.

Theorem 1.1. There exist a dictionary D and an element f € H, f # 0, such
that

If = Gm(£, D) = Cm 2| | 4y ()
with a positive constant C'.

In Section 4 we study the Weak Greedy Algorithm. Let a sequence 7 = {tx}%2,,
0 <t <1, be given. Following [T]| we define Weak Greedy Algorithm as follows.

Weak Greedy Algorithm (WGA). We define fj := f. Then for each m > 1,
we inductively define:
1). @I, € D is any satisfying

[(fre1> em)| = tmsup [(fr, 1, 9));
geD

fon = fo1 — ( ;@—1a80:n>80:n§

m

G (f;D) = (f]_1,9])

Jj=1

In Section 4 we discuss the following question. How does the weakness sequence
7 affect rate of convergence of WGA? We consider here only the special case of
weakness sequences 7 = {t;}7°, with ¢, = ¢, k= 1,2,..., 0 <t < 1. In order
to stress this we replace in notations 7 by ¢. It is known from [J] that WGA with
the above special weakness sequence {t} converges for any 0 < t < 1. We show in
Section 4 that the weakness parameter ¢ affects the rate of convergence of WGA on
the class A; (D). For the WGA we have the following upper estimate [T].
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Theorem 1.2. Let D be an arbitrary dictionary in H. Assume 7 := {tx}3>, is a
nonincreasing sequence. Then for f € A1(D, M) we have

(1.4) If = GL(f: D) < M(1+ Y t5)~tm/2H0m)
k=1
for any realization of GI (f, D).
In a particular case 7 = {t}, (tx =t, k =1,2,...), (1.4) gives
(1.5) 1f = GL (£, D) < M(1+mt?)~"/E20 0 < <1,

This estimate implies the following inequality

(1.6) If = Go(£, D)l < Cr(O)m™|flay(p), a<1/6,

with the exponent at approaching 0 linearly in . We prove in Section 4 that this
exponent can not decrease to 0 slower than linearly.

Theorem 1.3. There exists an absolute constant b > 0 such that for any t > 0 we
can find a dictionary Dy and a function f, € A1(Dy) such that for some realization

Gt (ft,Dt) of Weak Greedy Algorithm we have

(1.7) ljrflgiglof I fe — G4 (fe, Do) || /| £l 4y (py) > O.

2. GENERAL FORMULAS

We will be constructing simultaneously two sequences of elements {z,,}>° , and
{gn}5Zn- A number N will be chosen later to be large enough. Let {e;}?2; be an
orthonormal basis for H. We let {x,,} have the following form

(2.1) wn:Zan’kek, n=N,...,
k=1

and the {g,} have the form

(2'2) In+1 = Vni1Zn + hny1 + Eny1€np1, n=N,...,

with the sequences {7y}, {hx}, {€x}, 0 < & < 1, to be specified. The element gy
will be also specified later. We always assume that

(2.3) lgrll =1, k=N,....

We complete the inductive definition of sequences {z,};> y and {gn}7>  ; by
setting

(2.4) Tn+1 = Tn — (Tns Gnt1)Gn+1-
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We will not specify the sequences {vr}, {ht}, {x}, 0 < & < 1, in this section and
get here some general formulas under assumption that the above sequences satisfy
some conditions. It will be convenient for us to introduce one more sequence

(2.5) Qnt1 = (Tn,Gny1), n=N,....
We assume that h,y; € Span{ey,...,e,} for all n. This assumption and (2.4)
imply

An+1,n+1 = _Qn—i—lgn-i—l-

We assume that the sequences {7x} and {qgx} satisfy the following condition

(2.6) L= Yog1Gnps = 2L = N4 1,....

n

Let us list some identities which will be useful later on. Using (2.2) and (2.5) we
get from (2.4) that

(27) Tn+1l = Tn — Gn+19n+1 — (1 - 7n+1qn+1)mn - qn+1hn+1 - Qn—f-lfn—{—len—}-l -

dn+1
dn
The relations (2.1) and (2.2) imply

Ty, — Qnt1Pnt1 — Gnr1&nti€nt.

(2.8) Gnt1 = (Tns Gnt1) = T l|zn | + (0, ng )
We will need formulas for (z,,gg). It is clear from (2.4) that
(2.9) (Trygn) =0, n=N+1,....

I. Case N <k < n. By (2.6) and (2.7) we get for n > N + 2

(2.10) (T gk) = (2 1 — Guhny G8) = —2 (T 1, 91) — G (s G-

dn—1 gn—1
Repeating (2.10) and using (2.9) we obtain for k > N + 1

n n

(2.11) (T, gr) = Z—:@k,gﬁ —4n Z (hi, gk) = —an Z (i, gi)-

I=k+1 l=k+1

Let us choose gy now. We specify hyy1 = 0 and take 0 < € < 1. Set

(2.12) gn = exniilleni1]| 72 + Egn

with € such that ||gn|| = 1. Then

<$N+1,9N> =€

and zy41 € Span(gn, gn+1)- By (2.10) similarly to (2.11) we get for n > N + 2

n

dn
(2.13) (Tn,gn) = (@Nt1,98) —an Y, (hsgn).
dN+1 I—Nt2




II. Case k >n+1> N + 2. We have by (2.2) for k >n+1

(2.14) (T, Grt1) = (Tns Vet12k + Pit1) = Yer1(Tny T) + (Tn, Pig1)-
Next,
(2.15) (T, k) = (Tny The1 — QIk) = (Tn, Th—1) — Q(Tns Gk)-

We also have

(2'16) <xnagk> = <xn77kxk—1 + hk) = 7k<xnaxk—1> + <wnahk>
and
(2.17) (@nsxh-1) = 7 ((Zny Gr) = (Tns b))

Combining (2.15) and (2.17) we get from (2.14)

(2.18) (@ Grt1) = (Ve " = Q) Vo1 (Ts Gh) + (T hips — LBy,
Using (2.6) we rewrite (2.18)
(2.19) (@ gogr) = LFLIE (0 g) + (@ Bt — 2L,

Y& 4k—1

We note that (2.4) implies
l2nl? = Zns1ll* + (2n, gnt1)?
and
(2.20) @1 = enll® — lznall?, n=N,....
3. SPECIFICATIONS

Our goal is to prove that the procedure described by (2.4) is a Pure Greedy
Algorithm with regard to the dictionary D = {gn, }oo_, with approriately chosen
N and f. We will choose

N
oy = —N"2zn|) e,
=1

with the sequence {||z,||} specified below and we define gy by (2.12). With these
two starting elements we use the procedures (2.2) and (2.4) to get the sequences
{z,}° v and {g,}2° 5. We set f := xn4+1 and prove that for big enough N (2.4)
is a realization of PGA. This means that we should check that for any n > N + 1
and any m > N, m # n + 1, we have

(31) |<xnagm>| < gn+1-
We remind that by the definition of {gx} we have

<xn7 gn+1> = gn+1-

We will prove (3.1), considering separately two cases m >n+ 1 and m < n + 1.
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3.1 Numerical sequences. We define sequences {||z,||}021, {an}0a, {1n}iZs
depending on a parameter 0 < § < 1/4. In parallel we give in square brackets
asymptotic estimates for § = 1/6. This will give a construction for Theorem 1.1.

We set

-1 - 25 _
(32) lleal =15 Jlzal® = 1= (1=28)"'n ¥, [0, n=2,3,....

Then by (2.20) we have

q'r2L = ||£L’n_1||2 - ||CEn||2 ~ (1 - B)2n_2+2ﬂ7 n = 2737 sty

and
- 5 _
(3.3) an % (L= B)n 0, [2n 7500,
From (2.6) we get
(3.4) Yo =6t =gy =P Ve
We will also need the following relations
1 5 _

(3.5) Yt @n]* = gnir & (1= B)(1 = 28) "7, [om 5/9).

Tn+l  Gn+1 _1 2
3.6 — - ~(1-2 — :
(3:6) B (12, )
(3.7) Tl G0 1 (1+0(1))n"L.

Tn Gn—1
We will use the following numerical estimate for 5 = 1/6
(3.8) (1—p8)(1—26)"Y%=5(24)"Y2 < 1.021.

3.2 The sequence {h, }. We already agreed to set hy1 = 0. Let for n > N + 2
define h,, as follows

(3.9) hy 1= ﬂl@n, 0<an<ag<1/2
n J—
with
O, = pulk)ex
k
where ¢n(t) := X(an,n—1)(t) is the characteristic function of (an,n — 1) with a

parameter 0 < a < 1. In the following numerical estimates we set a = 0.05. The
sequence {ay,}, 0 < a,, < g < 1/2, will be chosen later. Then we have

(3.10) 1B, ~ (1 — a)/2n1/2,  [0.95!/2,1/2];



and

(3.11) | P |1 :_Z|¢n )|~ (1—a)n, [0.95n].

It is clear from (2.2), (2.3) and definition of ®,, that &, — 1 as n — oco. This and
(2.7) imply that for big n we will have

(3.12) angk < —(1+40(1))gn, n,k> Ny,

and

(313) A i= [(Tm; Prni1)| = —(Tny Prr1) > (140(1))Gm || Prnt1 |1, [0-79m1/6]-

The sequence {a,, } should satisfy the relation

41

Gmt1 = (T, Gma1) = 7m+1||xm||2 (Toms Pry1)

and by (3.5) and (3.13)

O+1 _
(3.14) m+ = A (mstllzm I = gmt1) <

(1 +0(1)(1 — a)man) 51— A1~ 28)"m 18, [

Let us specify o := 0.27 for § = 1/6. We will also need an estimate for A, — A,,_1.
Denote

(3.15) Q;L+1 = Gnt1 — Ent1nil = Ynt1%n + hny1.

Taking into account that coordinates of x,, are negative (see (3.12)) and coordinates
of h,1 are positive and less in absolute value than the corresponding coordinates
of z,, (see (3.9)) we get that the nonzero coordinates (g;,,)x of g;,,, are negative
and

(3.16) 19n411l < Wtllzall,  (gne)e < —(@ayn —ao/n), k= an.
We have
(317) Am—l - Am = <xm7 (I)m—i—l) - <wm—17(I)m> -

<mm717 @m—}-l - q)m> - Qm<gma q)m+1>-

All coordinates of x,,_; are negative. Therefore
(318) _(1 + 0(1))Qm = am—-1,m—1 S <-’Em717 @m—}-l - q)m> S

am—1,m-1+ [Zmllie = = (1 4 0(1))gm + [zm|l’s,

where

|Zmlloo = max |am,p|-
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From (2.7) and definition of {h,} we get

k/a

) < -1 <
(3.19) |1Zmlloo < (14 0(1))gm (1 + ao am%%’ém;l ) <

(14 0(1))gm(1 +aglnl/a), [1.51m~°/6].
Thus we get from (3.18) for § = 1/6 and big enough N
(3.20) —0.84m %% < (Zy_1, Pry1 — Prm) < 0.68m 576,

We get from (3.16)

Q

(3.21) [{gm > @mi1)| < gl Pmiall < YonllZm—1]l[|Prmsa

(1=a)2(1=p)1-28)""7% [,
On the other hand by (3.16) we get

(3.22) (gm, Pm+1) < —(1 — a)m(gmym — ao/m), [—0.53].

Thus from (3.17), (3.20), (3.21), and (3.22) we get for big N

(3.23) —0.4m %% < A,y — A, < 1.52m 7576,
Further,
(3.24) At — AT = (A1 — An) (A1 An) 7L

Using (3.13) we get for § = 1/6 from (3.24) and (3.23) that
(3.25) —0.641m~ /6 < A7t — AT < 2.43m /6,

We proceed now to estimate |(z,, gm+1)|- Consider first the case m > n. We will

prove (3.1) in this case by induction using the following representation formula
(2.19)

Ym+1 qm Ym+1
(3'26) <mn,gm+1> = + <mnagm> + <mna Pmg1 — + hm>'

Tm Gm—1 Ym

By (3.7) and induction assumption we get for the first term

m dm -
(3.27) 72 g, )] < (1 (1 0(1)m ™ g

Thus we need to prove that there exists § > 0 such that

(3.28) (£, Bt — 22FL R 0 < (1= 8)m gpan.

m




We have

(3.29) (T, hong1 — L2y =
Tm
Um4+1 41 Ym+1 Om
ny - (I)m - (I)m n; (I)m - =. .
(s P By = ) + (B (V2L = DL sy
We have by (3.19)
Om
(3.30) ja1] = [(zn, T—H(@m-i-l — &) <
; Omy1 -1 -1,-5/6
n = 0 n ) . .
|20 || s <(I+o01)(1+aplnl/a)g,riaom [0.41m™ n~"/7]

For as; we have

Om

am—i—l ’Ym—i—l
3.31 < P -
(3.31) jaz| < llznlll|@mll] =~ o —

Using (3.14) we get

Om+1 Tm+1l & - -1
(a2) IR (A0 AL ) O [l ~ g+
— TYm+1
A7y G (2l — o 2) = g + 2252g,) =t 01 + 0.

Taking into account (3.5) we get from (3.25) the following estimates for o;
(3.33) —0.14m™? < oy < 0.51m ™2,

Let us proceed to o2 now. We have

Ym—+1 —
(3.34) Y1 ([2m? = Zm—1l*) = g1 + ,y+ gm ~ —B(1 = p)ym~".

m

Using this, (3.13) and the following inequality for A,,

A < zmll|®m ]l = (1= B)(1 = 28)"2(1 = a)?m?, [m!/f,

we get
(3.35) —0.18m *m 2 < 05 < —0.13m 2.
Thus
—0.32m % < 01 + 02 < 0.38m 2.
and
(3.36) |ag| < |o1 + 02|z || B < 0.38m 32013,

Combining (3.30) with (3.36) we get

(3.37) 1] + |az| < 0.79m 1n =%/ < 0.99m g, 41.
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This inequality holds for all m > n and big enough N. Using (3.7) we inductively
get from (3.26) and (3.37) that for all m > n

(338) |<xnagm+1>| < dn+1-
We proceed now to the case m < n. By (2.11) and (2.13) we need to estimate

> (), k=N+1,....
I=k+1

We use the definition h; = ;745 ®; and the inequality 0 < oy < ag which holds if N
is big enough. If [ > 20k then (h;, gx) = 0. For [ = k + 1 we have

(s gi)| = [{h, gi)| < [1allllgrll < CET
For k + 2 <[ < 20k we have

«
(3-39) (hu,gi) = 7= (6 — (@1, 93)])
and by (3.16)
(D1, g1,)| < k2|gp|| < 1.5.

Thus
[(hi, k)| < 027171, 1>k +2,

and therefore

20k
(3.40) > 1{hu,gr)] < (14 0(1))0.271n.20 < 0.81.
I=k+1
Thus we have for m <n
(3.41) (Zn, gm)| < (0.81 4 0.05)gn+1 < Gnt1

for € = 0.05gx+1 and big N.
Let us complete the construction of a counterexample. Let N be big enough to
ensure (3.38) and (3.41) for n,m > N. Then we set

N

ry = —N"Y25(24)" /2N 1/3 Z e

i=1

and

gn+1 = qn+1en ||len]| T2 + Evprenta
with gn41 chosen from (3.3) with § =1/6 and {y41 > 0 such that ||gni1|| = 1. We
define now {x,, },>n+1 and {gn }n>n+2 by (2.2) and (2.4) with {v,}, {h,} specified
in Section 3 with 8 =1/6. We set € = 0.05¢n+1 and define

gv = eenprlleniil T +Egni,  lonll =1,
Consider now f := zy41 and D := {gn,gN+1,--- }. We have that f € Span(gy, gn+1)
and therefore |f|4,(py < C(IV). By (3.38) and (3.41) the PGA with regard to D
applied to f will exactly realize the iterative process (2.4). Thus
fm =TN+1+m
and o5
£l = (N 414 m) 22,
This implies
1 Fmll = CL(N)m /2

which completes the proof of Theorem 1.1.
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4. PROOF OF THEOREM 1.3

The construction of D; is the same as in Section 2 of [LT]. It uses the Equalizer
procedure. Let H be a Hilbert space with an orthonormal basis {e;}72;. For two
elements e;, e;, ¢ # j, and for a positive number ¢ < 1/3 we define the procedure
which we call ”equalizer” and denote E(e;, e;,1).

Equalizer E(e;,ej,t). Denote fy :=e; and g1 := aje; — (l—a%)l/zej with ag :=t.

Then ||g1|| = 1 and (fo,91) = t. We define the sequences fi1,...,fn; g2,.--,9N;
Qag,...,ay inductively:

Jn= fa-1— <fn—1agn>gn; In+1 ‘= Ony1€; — (1 - O‘?L—{—l)l/zej

with au,+1 satisfying
<fnagn+1>:t, n:1,2,....

Let f, = ane; + bpe; and N := N; be the number such that
an_1—by_1> V2t an—by < V2L
Then we modify the N-th step as follows. We take gy := 27%/2(e; — e;j) and
v =Ffn-1—{fn-1,9N)9n-
It is clear that then ay = by and
t < (fnv-1,9n) < 2t.

We list here the following simple relations
_ ) _ 2 \1/2 )
Any1 = Ap —tQnt1; bng1 =bp +t(1 —ap,)7/°, n<N-1;

(4.1) i1 — b1 = @n — by — t(ang1 + (1 —a2,)Y?), n< N-1;

faall® = I fall® =%, n <N -1.

Relation (4.1) and the inequality 1 < z 4 (1 —2?)/2 < 2/2 0 < z < 1, imply that
(4.2) N <1/t

and
/NP > | fvll? — 482 > || f))? — ¢ — 32

It is clear that E(e;,e;,t) is a WGA with regard to the dictionary e;, g1,92,--.,9n
with the ”weakness” parameter ¢.

We define WGA and a dictionary D, as follows. We begin with f := e; and
apply E(e1,ea,t). After Ny > 1 steps we get ¢9,. .. ,g?vt and

fr=ci(er +e)
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with the property
P2 > 11FI1% = (t+ 3t2) = ||F]I2(1 — ¢ — 3t2).

We use now E(ey, es,t) and E(ez, eq,t). After 2N; > 2 steps we obtain gj, ..., g5y,
and
f? =ca(er + - +eq)

with the property
P12 > AP =t = 36%) > [ FIP(1 -t = 36%)%

After s iterations we get
fs — cs(el + -4 625)

and apply E(e;, €19:s,t), i = 1,2,...,2°. We make 2°N; > 2° steps and get
g1y 95, and
fs+1 — Cs+1(€1 4.0+ 625+1)
with the property
1P > (FIP (L — ¢ — 382)°*

Thus we have
(43) ||f_GtS(f7Dt)|| Z (1_t_3t2)87 821727"'7

with the dictionary

Dt:UekU U g -

kEN §>0;1<1<25 NV,
The relation (4.3) and monotonicity of || f — G7,(f, D¢)|| prove the Theorem 1.3.

Remark 4.1. The estimate (1.5) implies that for small t the parameter a in (1.6)
can be taken close to 1/4. The inequality (4.3) implies that the parameter b in (1.7)
can be taken close to (In2)~1.
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